Using distributed agents to create university course timetables addressing essential & desirable constraints and fair allocation of resources
نویسنده
چکیده
In this study, the University Course Timetabling Problem (UCTP) has been investigated. This is a form of Constraint Satisfaction Problem (CSP) and belongs to the NP-complete class. The nature of a such problem is highly descriptive, a solution therefore involves combining many aspects of the problem. Although various timetabling algorithms have been continuously developed for nearly half a century, a gap still exists between the theoretical and practical aspects of university timetabling. This research is aimed to narrow the gap. We created an agent-based model for solving the university course timetabling problem, where this model not only considers a set of essential constraints upon the teaching activities, but also a set of desirable constraints that correspond to real-world needs. The model also seeks to provide fair allocation of resources. The capabilities of agents are harnessed for the activities of decision making, collaboration, coordination and negotiation by embedding them within the protocol designs. The resulting set of university course timetables involve the participation of every element in the system, with each agent taking responsibility for organising of its own course timetable, cooperating together to resolve problems. There are two types of agents in the model; these are Year-Programme Agent and Rooms Agent. In this study, we have used four different principles for organising the interaction between the agents: First-In-First-Out & Sequential (FIFOSeq), First-In-First-Out & Interleaved (FIFOInt), Round-Robin & Sequential (RRSeq) and Round-Robin & Interleaved (RRInt). The problem formulation and data instances of the third track of the Second International Timetabling Competition (ITC-2007) have been used as benchmarks for validating these implemented timetables. The validated results not only compare the four principles with each other; but also compare them with other timetabling techniques used for ITC-2007. The four different principles were able to successfully schedule all lectures in different periods, with no instances of two lectures occupying the same room at the same time. The lectures belonging to the same curriculum or taught by the same teacher do not conflict. Every lecture has been assigned a teacher before scheduling. The capacity of every assigned room is greater than, or equal to, the number of students in that course. The lectures of each course have been spread across the minimum number of working days with more than 98 percent success, and for more than 75 percent of the lectures under the same curriculum, it has been possible to avoid isolated deliveries. We conclude that the RRInt principle gives the most consistent likelihood of ensuring that each YPA
منابع مشابه
Optimization of Urban Budget Allocation Based on Spatial Justice Indicators (Case: Mashhad Metropolis)
Abstract: One of the main responsibilities of urban managers is to create justice in the area of fair and equal access of citizens to urban services. By objective realization of spatial justice concept, while providing the citizens with the appropriate services, the ground of reducing urban problems is prepared. Spatial justice is one of the main concepts of sustainable urban development. This ...
متن کاملDetermination of Optimal Allocation and Penetration Level of Distributed Energy Resources Considering Short Circuit Currents
The integration of Distributed Energy Resources (DER) in the distribution network has plenty of advantages if their allocation and Penetration Level (PL) are done appropriately. Hence, the challenge of finding the best allocation and PL of DERs in large distribution networks is an important but intricate problem. This paper proposes a novel methodology to simultaneously determine the optimal lo...
متن کاملApplication of the Grouping Genetic Algorithm to University Course Timetabling
University Course Timetabling-Problems (UCTPs) involve the allocation of resources (such as rooms and timeslots) to all the events of a university, satisfying a set of hard-constraints and, as much as possible, some soft constraints. Here we work with a well-known version of the problem where there seems a strong case for considering these two goals as separate sub-problems. In particular we no...
متن کاملFairness in Academic Course Timetabling
We consider the problem of creating fair course timetables in the setting of a university. Our motivation is to improve the overall satisfaction of individuals concerned (students, teachers, etc.) by providing a fair timetable to them. The central idea is that undesirable arrangements in the course timetable, i. e., violations of soft constraints, should be distributed in a fair way among the i...
متن کاملUsing fuzzy c-means clustering algorithm for common lecturer timetabling among departments
University course timetabling problem is one of the hard problems and it must be done for each term frequently which is an exhausting and time consuming task. The main technique in the presented approach is focused on developing and making the process of timetabling common lecturers among different departments of a university scalable. The aim of this paper is to improve the satisfaction of com...
متن کامل